Mostrar el registro sencillo del ítem
dc.contributor.author | Dotto, Francesco | |
dc.contributor.author | Farcomeni, Alessio | |
dc.contributor.author | García Escudero, Luis Ángel | |
dc.contributor.author | Mayo Iscar, Agustín | |
dc.date.accessioned | 2016-12-20T09:39:43Z | |
dc.date.available | 2016-12-20T09:39:43Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Soft Methods for Data Science. Editors: Maria Brigida Ferraro, Paolo Giordani , Barbara Vantaggi , Marek Gagolewski , María Ángeles Gil, Przemysław Grzegorzewski , Olgierd Hryniewicz , Springer International Publishing, 2016, p. 197-204 (Advances in Intelligent Systems and Computing, 456) | es |
dc.identifier.isbn | 978-3-319-42972-4 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/21842 | |
dc.description | Producción Científica | es |
dc.description.abstract | A methodology for robust fuzzy clustering is proposed. This methodology can be widely applied in very different statistical problems given that it is based on probability likelihoods. Robustness is achieved by trimming a fixed proportion of “most outlying” observations which are indeed self-determined by the data set at hand. Constraints on the clusters’ scatters are also needed to get mathematically well-defined problems and to avoid the detection of non-interesting spurious clusters. The main lines for computationally feasible algorithms are provided and some simple guidelines about how to choose tuning parameters are briefly outlined. The proposed methodology is illustrated through two applications. The first one is aimed at heterogeneously clustering under multivariate normal assumptions and the second one migh be useful in fuzzy clusterwise linear regression problems. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Springer International Publishing | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Statistics | es |
dc.title | Robust Fuzzy Clustering via Trimming and Constraints | es |
dc.type | info:eu-repo/semantics/bookPart | es |
dc.identifier.doi | 10.1007/978-3-319-42972-4_25 | |
dc.relation.publisherversion | http://link.springer.com/chapter/10.1007/978-3-319-42972-4_25 | es |
dc.identifier.publicationtitle | Soft Methods for Data Science | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad (MTM2014-56235-C2-1-P) | es |
dc.description.project | Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA212U13) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International