Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorGordaliza Ramos, Alfonso 
dc.contributor.authorMatrán Bea, Carlos 
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2016-12-20T11:40:54Z
dc.date.available2016-12-20T11:40:54Z
dc.date.issued2013
dc.identifier.citationStatistical Models for Data Analysis 2013. Studies in Classification, Data Analysis, and Knowledge Organization 201, Edited by Paolo Giudici, Salvatore Ingrassia, Maurizio Vichi,es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/21848
dc.description.abstractGrouping around affine subspaces and other types of manifolds is receiving a lot of attention in the literature due to its interest in several fields of application. Allowing for different dimensions is needed in many applications. This work extends the TCLUST methodology to deal with the problem of grouping data around different dimensional linear subspaces in the presence of noise. Two ways of considering error terms in the orthogonal of the linear subspaces are considered.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectEstadísticaes
dc.titleGrouping Around Different Dimensional Affine Subspaceses
dc.typeinfo:eu-repo/semantics/bookPartes
dc.rightsAttribution 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem