• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22920

    Título
    Degrees of freedom and model selection in semiparametric additive monotone regression
    Autor
    Rueda Sabater, María CristinaAutoridad UVA
    Año del Documento
    2013
    Documento Fuente
    Journal of Multivariate Analysis. Vol 117, pp: 88-99
    Résumé
    The degrees of freedom of semiparametric additive monotone models are derived using results about projections onto sums of order cones. Two important related questions are also studied, namely, the de nition of estimators for the parameter of the error term and the formulation of speci c Akaike Information Criteria statistics. Several alternatives are proposed to solve both problems and simulation experiments are conducted to compare the behavior of the di erent candidates. A new selection criterion is proposed that combines the ability to guess the model but also the e ciency to estimate the variance parameter. Finally, the criterion is used to select the model in a regression problem from a well known data set.
    Revisión por pares
    SI
    DOI
    10.1016/j.jmva.2013.02.001
    Patrocinador
    Ministerio de Ciencia e Innovación grant (MTM2012-37129)
    Version del Editor
    http://www.sciencedirect.com/science/article/pii/S0047259X13000158
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22920
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [78]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    DegFreCR.pdf
    Tamaño:
    333.7Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10