• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22932

    Título
    Performance and estimation of the true error rate of classification rules built with additional information. An application to a cancer trial
    Autor
    Conde del Río, DavidAutoridad UVA Orcid
    Salvador González, BonifacioAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Año del Documento
    2013
    Editorial
    De Gruyter
    Descripción
    Producción Científica
    Documento Fuente
    Statistical Applications in Genetics and Molecular Biology, 2013, 12(5), p. 583-602
    Zusammenfassung
    Classification rules that incorporate additional information usually present in discrimination problems are receiving certain attention during the last years as they perform better than the usual rules in poor discrimination problems. Fern´andez et al (2006) proved that these rules have a lower unconditional misclassification probability than the usual Fisher’s rule but they did not consider the estimation of the conditional error probability when a training sample is given (the so-called true error rate) which is a very interesting parameter in practice. In this paper we consider the problem of estimating the true error rate of these classification rules in the classical topic of discrimination among two normal populations. We prove theoretical results on the apparent error rate of the rules that expose the need of new estimators of their true error rate. Our proposal is to also consider the additional information in the definition of the true error rate estimators. We propose four such new estimators. Two of them are defined incorporating the additional information into the leave-one-out-bootstrap. The other two are the corresponding cross-validation after bootstrap versions. We compare these new estimators with the usual ones in a simulation study and in a cancer trial application, showing the very good behavior, in terms of mean square error, of the leave-one-out bootstrap estimators that incorporate the available additional information.
    Palabras Clave
    Bootstrap (Estadística)
    ISSN
    1544-6115
    Revisión por pares
    SI
    DOI
    10.1515/sagmb-2012-0037
    Patrocinador
    Ministerio de Ciencia e Innovación (Project MTM2012-37129)
    Version del Editor
    https://www.degruyter.com/view/j/sagmb
    Propietario de los Derechos
    © De Gruyter
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/22932
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [78]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    SAGBM-Estimating-true-preprint.pdf
    Tamaño:
    149.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10