Mostrar el registro sencillo del ítem

dc.contributor.authorConde del Río, David 
dc.contributor.authorSalvador González, Bonifacio 
dc.contributor.authorRueda Sabater, María Cristina 
dc.contributor.authorFernández Temprano, Miguel Alejandro 
dc.date.accessioned2017-03-31T10:43:52Z
dc.date.available2017-03-31T10:43:52Z
dc.date.issued2013
dc.identifier.citationStatistical Applications in Genetics and Molecular Biology, 2013, 12(5), p. 583-602es
dc.identifier.issn1544-6115es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/22932
dc.descriptionProducción Científicaes
dc.description.abstractClassification rules that incorporate additional information usually present in discrimination problems are receiving certain attention during the last years as they perform better than the usual rules in poor discrimination problems. Fern´andez et al (2006) proved that these rules have a lower unconditional misclassification probability than the usual Fisher’s rule but they did not consider the estimation of the conditional error probability when a training sample is given (the so-called true error rate) which is a very interesting parameter in practice. In this paper we consider the problem of estimating the true error rate of these classification rules in the classical topic of discrimination among two normal populations. We prove theoretical results on the apparent error rate of the rules that expose the need of new estimators of their true error rate. Our proposal is to also consider the additional information in the definition of the true error rate estimators. We propose four such new estimators. Two of them are defined incorporating the additional information into the leave-one-out-bootstrap. The other two are the corresponding cross-validation after bootstrap versions. We compare these new estimators with the usual ones in a simulation study and in a cancer trial application, showing the very good behavior, in terms of mean square error, of the leave-one-out bootstrap estimators that incorporate the available additional information.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherDe Gruyteres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationBootstrap (Estadística)es
dc.titlePerformance and estimation of the true error rate of classification rules built with additional information. An application to a cancer triales
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© De Gruyteres
dc.identifier.doi10.1515/sagmb-2012-0037es
dc.relation.publisherversionhttps://www.degruyter.com/view/j/sagmbes
dc.identifier.publicationtitleStatistical Applications in Genetics and Molecular Biologyes
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (Project MTM2012-37129)es


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem