Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22932
Título
Performance and estimation of the true error rate of classification rules built with additional information. An application to a cancer trial
Autor
Año del Documento
2013
Editorial
De Gruyter
Descripción
Producción Científica
Documento Fuente
Statistical Applications in Genetics and Molecular Biology, 2013, 12(5), p. 583-602
Abstract
Classification rules that incorporate additional information usually present in discrimination problems are receiving certain attention during the last years as they perform better than the usual rules in poor discrimination problems. Fern´andez et al (2006) proved that these rules have a lower unconditional misclassification probability than the usual Fisher’s rule but they did not consider the estimation of the conditional error probability when a training sample is given (the so-called true error rate) which is a very interesting parameter in practice.
In this paper we consider the problem of estimating the true error rate of these classification rules in the classical topic of discrimination among two normal populations. We prove theoretical results on the apparent error rate of the rules that expose the need of new estimators of their true error rate. Our proposal is to also consider the additional information in the definition of the true error rate estimators. We propose four such new estimators. Two of them are defined incorporating the additional information into the leave-one-out-bootstrap. The other two are the corresponding cross-validation after bootstrap versions. We compare these new estimators with the usual ones in a simulation study and in a cancer trial application, showing the very good behavior, in terms of mean square error, of the leave-one-out bootstrap estimators that incorporate the available additional information.
Palabras Clave
Bootstrap (Estadística)
ISSN
1544-6115
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (Project MTM2012-37129)
Version del Editor
Propietario de los Derechos
© De Gruyter
Idioma
eng
Derechos
openAccess
Collections
Files in this item