Mostrar el registro sencillo del ítem

dc.contributor.authorLarriba González, Yolanda 
dc.contributor.authorRueda Sabater, María Cristina 
dc.contributor.authorFernández Temprano, Miguel Alejandro 
dc.date.accessioned2017-03-31T10:52:54Z
dc.date.available2017-03-31T10:52:54Z
dc.date.issued2015
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/22933
dc.description.abstractIdentification of periodic patterns in gene expression data is important for studying the regulation mechanism of the circadian system. The information available is often given only by one or two cycles. Consequently, the number of observations is not enough to fit certain models, such as Fourier's models, properly. Some authors have already developed procedures or algorithms among which the JTK\_Cycle algorithm is the most popular one. We propose a new method to identify cyclic gene expressions based on circular order restricted inference. Validation of the method is made through real data sets and simulations. Moreover, we compare the results obtained by the method with other detecting methods developed in the literature.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleA new method for identification of cyclic circadian genes using circular isotonic regression.es
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.title.eventXXXV Congreso Nacional de Estadística e Investigación Operativaes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem