• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/22937

    Título
    Evaluation of microarray normalization strategies to detect cyclic circadian genes.
    Autor
    Larriba González, YolandaAutoridad UVA Orcid
    Rueda Sabater, María CristinaAutoridad UVA
    Fernández Temprano, Miguel AlejandroAutoridad UVA Orcid
    Peddada, Shyamal
    Congreso
    XXXVI Congreso Nacional de Estadística e Investigación Operativa
    Año del Documento
    2016
    Resumen
    Microarrays are a widely used research tool in gene expression analysis. A large variety of preprocessing methods for raw intensity measures is available to establish gene expression values. Normalization is the key stage in preprocessing methods, since it removes systematic variations in microarray data. Then, the subsequent analyses may be highly dependent on normalization strategy employed. Our research focuses on detecting rhythmic signals in measured circadian gene expressions. We have observed that rhythmicity detection depends not only upon the rhythmicity detection algorithm but also upon the normalization strategy employed. We analyze the effects of well-known normalization strategies in literature within three different rhythmicity detection algorithms; JTK, RAIN and our recently proposal ORI, a novel statistical methodology based on Order Restricted Inference. The results obtained are compared using artificial microarray data and publicly available circadian data bases.
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/22937
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP24 - Comunicaciones a congresos, conferencias, etc. [18]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    actas-seio-online-45-46.pdf
    Tamaño:
    13.20Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10