Mostrar el registro sencillo del ítem

dc.contributor.authorFernández Colino, Alicia
dc.contributor.authorArias Vallejo, Francisco Javier 
dc.contributor.authorAlonso Rodrigo, Matilde 
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.date.accessioned2017-04-03T13:59:58Z
dc.date.available2017-04-03T13:59:58Z
dc.date.issued2014
dc.identifier.citationBiomacromolecules. 2014 Oct 13;15(10):3781-93es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/22960
dc.description.abstractAlthough significant progress has been made in the area of injectable hydrogels for biomedical applications and model cell niches, further improvements are still needed, especially in terms of mechanical performance, stability, and biomimicry of the native fibrillar architecture found in the extracellular matrix (ECM). This work focuses on the design and production of a silk-elastin-based injectable multiblock corecombinamer that spontaneously forms a stable physical nanofibrillar hydrogel under physiological conditions. That differs from previously reported silk-elastin-like polymers on a major content and predominance of the elastin-like part, as well as a more complex structure and behavior of such a part of the molecule, which is aimed to obtain well-defined hydrogels. Rheological and DSC experiments showed that this system displays a coordinated and concomitant dual gelation mechanism. In a first stage, a rapid, thermally driven gelation of the corecombinamer solution takes place once the system reaches body temperature due to the thermal responsiveness of the elastin-like (EL) parts and the amphiphilic multiblock design of the corecombinamer. A bridged micellar structure is the dominant microscopic feature of this stage, as demonstrated by AFM and TEM. Completion of the initial stage triggers the second, which is comprised of a stabilization, reinforcement, and microstructuring of the gel. FTIR analysis shows that these events involve the formation of β-sheets around the silk motifs. The emergence of such β-sheet structures leads to the spontaneous self-organization of the gel into the final fibrous structure. Despite the absence of biological cues, here we set the basis of the minimal structure that is able to display such a set of physical properties and undergo microscopic transformation from a solution to a fibrous hydrogel. The results point to the potential of this system as a basis for the development of injectable fibrillar biomaterial platforms toward a fully functional, biomimetic, artificial extracellular matrix, and cell niches.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherACS Publicationses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.subject.classificationElastin-like Recombinamerses
dc.subject.classificationSELRes
dc.subject.classificationHydrogeles
dc.subject.classificationFibrillares
dc.subject.classificationArtifical extracellular matrixes
dc.titleA Self-Organized ECM-Mimetic Model Based on an Amphiphilic Multiblock Silk-Elastin-Like co-Recombinamer with a Concomitant Dual Physical Gelation Processes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1021/bm501051tes
dc.peerreviewedSIes
dc.description.projectEste trabajo forma parte de Proyectos de Investigación financiados por la Comisión Europea a través del Fondo Europeo de Desarrollo Regional (ERDF), por el del MINECO (MAT2013-41723-R, MAT2013- 42473-R, PRI-PIBAR-2011-1403 y MAT2012-38043), la Junta de Castilla y León (VA049A11, VA152A12 y VA155A12) y el Instituto de Salud Carlos III bajo el Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León.es


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem