• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/24417

    Título
    Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods
    Autor
    Alonso Mallo, IsaíasAutoridad UVA Orcid
    Cano Urdiales, BegoñaAutoridad UVA Orcid
    Reguera, Nuria
    Año del Documento
    2017
    Editorial
    Oxford Academic
    Documento Fuente
    IMA J. Numer. Anal.
    Abstract
    It is well known the order reduction phenomenon which arises when exponential methods are used to integrate in time initial boundary value problems, so that the classical order of these methods is reduced. In particular, this subject has been recently studied for Lie-Trotter and Strang exponential splitting methods, and the order observed in practice has been exactly calculated. In this paper, a technique is suggested to avoid that order reduction. We deal directly with non-homogeneous time-dependent boundary conditions, without having to reduce the problem to homogeneous ones. We give a thorough error analysis of the full discretization and justify why the computational cost of the technique is negligible in comparison with the rest of the calculations of the method. Some numerical results for dimension splittings are shown which corroborate that much more accuracy is achieved.
    Revisión por pares
    SI
    Propietario de los Derechos
    Institute of Mathematics and its Applications
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/24417
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    orderredsplittingIMArevision3-01.pdf
    Tamaño:
    183.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10