Skip navigation
Por favor, use este identificador para citar o enlazar este ítem: http://uvadoc.uva.es/handle/10324/24417
Título: Avoiding order reduction when integrating linear initial boundary value problems with exponential splitting methods
Autor: Alonso-Mallo, Isaías
Cano, Begoña
Reguera, Nuria
Año del Documento: 2017
Editorial: Oxford Academic
Documento Fuente: IMA J. Numer. Anal.
Resumen: It is well known the order reduction phenomenon which arises when exponential methods are used to integrate in time initial boundary value problems, so that the classical order of these methods is reduced. In particular, this subject has been recently studied for Lie-Trotter and Strang exponential splitting methods, and the order observed in practice has been exactly calculated. In this paper, a technique is suggested to avoid that order reduction. We deal directly with non-homogeneous time-dependent boundary conditions, without having to reduce the problem to homogeneous ones. We give a thorough error analysis of the full discretization and justify why the computational cost of the technique is negligible in comparison with the rest of the calculations of the method. Some numerical results for dimension splittings are shown which corroborate that much more accuracy is achieved.
Revisión por Pares: SI
Propietario de los Derechos: Institute of Mathematics and its Applications
Idioma: spa
URI: http://uvadoc.uva.es/handle/10324/24417
Derechos: info:eu-repo/semantics/restrictedAccess
Aparece en las colecciones:DEP51 - Artículos de revista

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
orderredsplittingIMArevision3-01.pdf183,86 kBAdobe PDFThumbnail
Visualizar/Abrir


Los ítems de UVaDOC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.

Comentarios
Universidad de Valladolid
Powered by MIT's. DSpace software, Version 5.5