Mostrar el registro sencillo del ítem

dc.contributor.authorLi, Yuping
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.contributor.authorAparicio, Conrado
dc.date.accessioned2017-07-18T07:27:02Z
dc.date.available2018-08-01T23:40:44Z
dc.date.issued2017
dc.identifier.citationACS Applied Materials & Interfaces, 2017, 9 (7), pp 5838–5846es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/24448
dc.descriptionProducción Científicaes
dc.description.abstractBiomineralization of bone, a controlled process where hydroxyapatite nanocrystals preferentially deposit in collagen fibrils, is achieved by the interplay of the collagen matrix and noncollagenous proteins. Mimicking intrafibrillar mineralization in synthetic systems is highly attractive for the development of advanced hybrid materials with elaborated morphologies and outstanding mechanical properties, as well as understanding the mechanisms of biomineralization. Inspired by nature, intrafibrillar mineralization of collagen fibrils has been successfully replicated in vitro via biomimetic systems, where acidic polymeric additives are used as analogue of noncollagenous proteins in mediating mineralization. The development of synthetic templates that mimic the structure and functions of collagenous matrix in mineralization has yet to be explored. In this study, we demonstrated that self-assembled fibrils of elastin-like recombinamers (ELRs) can induce intrafibrillar mineralization. The ELRs displayed a disordered structure at low temperature but self-assembled into nanofibrils above its inverse transition temperature. In the presence of the self-assembled ELR fibrils, polyaspartate-stabilized amorphous calcium phosphates preferentially infiltrated into the fibrils and then crystallized into hydroxyapatite nanocrystals with their [001] axes aligned parallel to the long axis of the ELR fibril. As the recombinant technology enables designing and producing well-defined ELRs, their molecular and structural properties can be fine-tuned. By examining the ultrastructure of the self-assembled ELRs fibrils as well as their mineralization, we concluded that the spatial confinement formed by a continuum β-spiral structure in an unperturbed fibrillar structure rather than electrostatic interactions or bioactive sequences in the recombinamer composition played the crucial role in inducing intrafibrillar mineralization.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Chemical Societyes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationCalcificaciónes
dc.subject.classificationMineralizaciónes
dc.titleIntrafibrillar Mineralization of Self-Assembled Elastin-Like Recombinamer Fibrilses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1021/acsami.6b15285es
dc.relation.publisherversionhttp://pubs.acs.org/doi/abs/10.1021/acsami.6b15285es
dc.peerreviewedSIes
dc.description.embargo2018-08-01es
dc.description.projectMinisterio de Economía, Industria y Competitividad (Project MAT2013-42473-R and MAT2015-68901R)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA244U13, VA313U14 and VA015U16)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/646075
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/642687
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/278557
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/317306
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem