• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25287

    Título
    Estimación automática de la gravedad de la apnea del sueño mediante una red neuronal artificial aplicada al flujo aéreo monocanal
    Autor
    Crespo Senado, Andrea
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Juez García, Laura
    Álvarez González, DanielAutoridad UVA Orcid
    Arroyo Domingo, Carmen AinhoaAutoridad UVA
    Campo Matias, Félix delAutoridad UVA Orcid
    Frutos Arribas, Julio Fernando deAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Congreso
    Congreso de la Sociedad Española de Neumología y Cirugía Torácica
    Año del Documento
    2017
    Documento Fuente
    50 Congreso de la Sociedad Española de Neumología y Cirugía Torácica, Junio 2017, Madrid, ·España
    Resumen
    Introducción. El objetivo es evaluar un método simplificado de ayuda al diagnóstico del Síndrome de Apnea-Hipopnea del Sueño (SAHS) basado en el procesado automático del flujo aéreo monocanal (FA). El análisis espectral y no lineal ha demostrado su utilidad para caracterizar el SAHS en esta señal. Además, las redes neuronales artificiales (RN) han sido capaces de alcanzar una elevada precisión diagnóstica en este contexto. Se propone entrenar una RN para estimar tanto la presencia como la severidad del SAHS mediante información espectral y no lineal obtenida de la señal de FA. Material y Métodos. Un total de 320 pacientes consecutivos realizaron una PSG completa en el hospital. Las señales de FA se obtuvieron mediante sonda de presión. El índice de apnea-hipopnea (IAH) se empleó para establecer la severidad del SAHS: no SAHS (IAH <5 e/h), leve (5≤ IAH <15 e/h), moderado (15≤ IAH <30 e/h) y severo (IAH ≥30 e/h). La población se dividió aleatoriamente en entrenamiento (60%) y test (40%). Se emplearon 10 variables espectrales y no lineales obtenidas automáticamente de cada registro de FA del grupo de entrenamiento para diseñar una RN Bayesiana perceptrón multicapa (BY-MLP) con capacidad para clasificar a cada paciente dentro de uno de los niveles de severidad. El rendimiento diagnóstico se evaluó en el grupo de test mediante métricas derivadas de la matriz de confusión. Resultados. La Tabla I muestra la matriz de confusión en el grupo de test. El 59.5% de los sujetos fue asignado correctamente dentro de su grupo de severidad, siendo los sujetos leves y moderados los más difíciles de clasificar. El 90% de los sujetos no SAHS fueron clasificados como no SAHS (70%) o SAHS leve (20%). Ningún sujeto no SAHS fue clasificado como severo. El 98.4% de los pacientes severos fueron clasificados severos (80.6%) o moderados (17.7%). Ningún paciente severo fue asignado al grupo no SAHS. En la Tabla II se observa que para un punto de corte de 5 e/h se alcanzaron los mejores resultados en términos de clasificación binaria: 89.7% Se, 70.0% Sp, 88.1% Acc, 97.2% PPV, 36.8% NPV, 3.0 LR+ y 0.15 LR-. Los puntos de corte de 15 y 30 e/h alcanzaron una precisión del 81.0%. Conclusiones. El análisis automático de la señal de FA mediante una RN BY-MLP alcanza una elevada precisión y podría emplearse como prueba simplificada de diagnóstico de SAHS.
    Patrocinador
    Proyectos 158/2015 de SEPAR y VA037U16 de la Junta de Castilla y León y FEDER. Contrato Juan de la Cierva MINECO.
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/25287
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Comunicaciones a congresos, conferencias, etc. [36]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Crespo_etal_SEPAR-2017(Resumen_FA-SAHS).pdf
    Tamaño:
    596.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10