• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Comunicaciones a congresos, conferencias, etc.
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/25556

    Título
    On Weierstrass semigroups and algebraic geometry one-point codes
    Autor
    Farrán Martín, José IgnacioAutoridad UVA Orcid
    Congreso
    Coding Theory, Cryptology and Related Areas
    Año del Documento
    2000
    Editorial
    Springer-Verlag. Berlín
    Resumo
    We present two different algorithms to compute the Weierstrass semigroup at a point P together with functions for each value in this semigroup from a plane model of the curve. The first one works in a quite general situation and it is founded on the Brill-Noether algorithm. The second method works in the case of P being the only point at infinity of the plane model, what is very usual in practice, and it is based on the Abhyankar-Moh theorem, the theory of approximate roots and an integral basis for the affine algebra of the curve. This last way is simpler and has an additional advantage: one can easily compute the Feng-Rao distances for the corresponding array of one-point algebraic geometry codes, this thing be done by means of the Apéry set of the Weierstrass semigroup. Everything can be applied to the problem of decoding such codes by using the majority scheme of Feng and Rao.
    ISBN
    978-3-540-66248-8
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/25556
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Comunicaciones a congresos, conferencias, etc. [6]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    ICCC98.pdf.pdf
    Tamaño:
    218.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10