Mostrar el registro sencillo del ítem

dc.contributor.authorVal Puente, Lara del 
dc.contributor.authorHerráez Sánchez, Marta 
dc.contributor.authorIzquierdo Fuente, Alberto 
dc.contributor.authorVillacorta Calvo, Juan José 
dc.contributor.authorSuarez Vivar, Luis
dc.date.accessioned2017-09-21T09:10:37Z
dc.date.available2017-09-21T09:10:37Z
dc.date.issued2017
dc.identifier.citationLondres (Reino Unido), 23-27July 2017es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/25818
dc.descriptionProducción Científicaes
dc.description.abstractDuring the last decades, vibration analysis has been used to evaluate condition monitoring and fault diagnosis of complex mechanical systems. The problem associated with these analysis methods is that the employed sensors must be in contact with the vibrant surfaces. To avoid this problem, the current trend is the analysis of the noise, or the acoustic signals, which are directly related with the vibrations, to evaluate condition monitoring and/or fault diagnosis of mechani-cal systems. Both, acoustic and vibration signals, obtained from a system can reveal information related with its operation conditions. Using arrays formed by digital MEMS microphones, which employ acquisition/processing systems based on FPGA, allows creating systems with a high number of sensors paying a reduced cost. This work studies the feasibility of the use of acoustic images, obtained by an array with 64 MEMS microphones (8x8) in a hemianechoic chamber, to detect, characterize and, eventually, identify failure conditions in machinery. The resolution obtained to spatially identify the problem origin in the machine under test. The acous-tic images are processed to extract different feature patterns to identify and classify machinery failures.es
dc.format.extent8 pes
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationMEMS microphone arrayes
dc.subject.classificationFault diagnosises
dc.titleCould an array of MEMS microphones be used to monitor machinery condition or diagnose failures?es
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.title.eventInternational Congress on Sound and Vibration (ICSV 24)es
dc.description.projectMINECO/FEDER, UE TEC 2015-68170-Res
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem