Mostrar el registro sencillo del ítem

dc.contributor.advisorFuente Redondo, Pablo Lucio de la es
dc.contributor.advisorMartínez Prieto, Miguel Angel es
dc.contributor.authorBarrales Ruiz, Carlos Vladimir
dc.contributor.editorUniversidad de Valladolid. Escuela Técnica Superior de Ingenieros de Telecomunicación es
dc.date.accessioned2017-12-13T19:31:04Z
dc.date.available2017-12-13T19:31:04Z
dc.date.issued2017
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/27615
dc.description.abstractApache Spark is a general purpose big data processing framework using the mapreduce paradigm, quickly becoming very popular. Although the information provided by Spark authors indicates a substantial improvement in performance against Hadoop, there is very little evidence in the literature of specific tests that reliably proves such claims. In this Master Work study the benefits of Spark and the most important factors on which they depend, considering as a reference the transformation of RDF datasets into HDT format. The main objective of this work is to perform one exploratory study to leverage Spark solving the HDT serialization problem, finding ways to remove limitations of the current implementations, like the memory need which use to increase with the dataset size. To do that, first we’ve setup a open environment to ensure reproducibility and contributed with 3 different approaches implementing the most heavy task in the HDT serialization. The test performed with different dataset sizes showed the benefits obtained with the proposed solution compared to legacy Hadoop MapReduce implementation, as well as some highlights to improve even more the serialization algorithm.es
dc.description.sponsorshipDepartamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)es
dc.format.mimetypeapplication/zipes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationApache Spark (Procesador de datos)es
dc.subject.classificationRDFes
dc.subject.classificationHadoop MapReducees
dc.subject.classificationHDT (Formato)es
dc.titleCompresión de datasets RDF en HDT usando Sparkes
dc.typeinfo:eu-repo/semantics/masterThesises
dc.description.degreeMáster en Investigación en Tecnologías de la Información y las Comunicacioneses
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem