• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/28912

    Título
    Higher-order exponential integrators for quasi-linear parabolic problems. Part II: Convergence
    Autor
    González Fernández, Cesáreo JesúsAutoridad UVA Orcid
    Thalhammer, Mechthild
    Año del Documento
    2016
    Documento Fuente
    SIAM Journal on Numerical Analysis 54-5 (2016), pp. 2868-2888
    Résumé
    In this work, the convergence analysis of explicit exponential time integrators based on general linear methods for quasi-linear parabolic initial boundary value problems is pursued. Compared to other types of exponential integrators encountering rather severe order reductions, in general, the considered class of exponential general linear methods provides the possibility of constructing schemes that retain higher-order accuracy in time when applied to quasi-linear parabolic problems. In view of practical applications, the case of variable time step sizes is incorporated. The convergence analysis is based upon two fundamental ingredients. The needed stability bounds, obtained under mild restrictions on the ratios of subsequent time step sizes, have been deduced in the recent work [C. González and M. Thalhammer, SIAM J. Numer. Anal., 53 (2015), pp. 701--719]. The core of the present work is devoted to the derivation of suitable local and global error representations. In conjunction with the stability bounds, a convergence result is established.
    ISSN
    0036-1429
    Revisión por pares
    SI
    DOI
    10.1137/15M103384
    Patrocinador
    Ministerio de Economía, Industria y Competitividad, proyecto MTM2013-46553-C3-1-P y Austrian Science Fund (FWF), projects P21620-N13 and P28645-N35.
    Version del Editor
    http://www.siam.org/journals/sinum.php
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/28912
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Higher-exponential-Gonzalez-Thalhammer_2016.pdf
    Tamaño:
    485.2Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10