Mostrar el registro sencillo del ítem

dc.contributor.authorGonzález Fernández, Cesáreo Jesús 
dc.contributor.authorThalhammer, Mechthild
dc.date.accessioned2018-03-06T22:03:42Z
dc.date.available2018-03-06T22:03:42Z
dc.date.issued2016
dc.identifier.citationSIAM Journal on Numerical Analysis 54-5 (2016), pp. 2868-2888es
dc.identifier.issn0036-1429es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/28912
dc.description.abstractIn this work, the convergence analysis of explicit exponential time integrators based on general linear methods for quasi-linear parabolic initial boundary value problems is pursued. Compared to other types of exponential integrators encountering rather severe order reductions, in general, the considered class of exponential general linear methods provides the possibility of constructing schemes that retain higher-order accuracy in time when applied to quasi-linear parabolic problems. In view of practical applications, the case of variable time step sizes is incorporated. The convergence analysis is based upon two fundamental ingredients. The needed stability bounds, obtained under mild restrictions on the ratios of subsequent time step sizes, have been deduced in the recent work [C. González and M. Thalhammer, SIAM J. Numer. Anal., 53 (2015), pp. 701--719]. The core of the present work is devoted to the derivation of suitable local and global error representations. In conjunction with the stability bounds, a convergence result is established.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleHigher-order exponential integrators for quasi-linear parabolic problems. Part II: Convergencees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1137/15M103384es
dc.relation.publisherversionhttp://www.siam.org/journals/sinum.phpes
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad, proyecto MTM2013-46553-C3-1-P y Austrian Science Fund (FWF), projects P21620-N13 and P28645-N35.es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem