• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/28912

    Título
    Higher-order exponential integrators for quasi-linear parabolic problems. Part II: Convergence
    Autor
    González Fernández, Cesáreo JesúsAutoridad UVA Orcid
    Thalhammer, Mechthild
    Año del Documento
    2016
    Documento Fuente
    SIAM Journal on Numerical Analysis 54-5 (2016), pp. 2868-2888
    Abstract
    In this work, the convergence analysis of explicit exponential time integrators based on general linear methods for quasi-linear parabolic initial boundary value problems is pursued. Compared to other types of exponential integrators encountering rather severe order reductions, in general, the considered class of exponential general linear methods provides the possibility of constructing schemes that retain higher-order accuracy in time when applied to quasi-linear parabolic problems. In view of practical applications, the case of variable time step sizes is incorporated. The convergence analysis is based upon two fundamental ingredients. The needed stability bounds, obtained under mild restrictions on the ratios of subsequent time step sizes, have been deduced in the recent work [C. González and M. Thalhammer, SIAM J. Numer. Anal., 53 (2015), pp. 701--719]. The core of the present work is devoted to the derivation of suitable local and global error representations. In conjunction with the stability bounds, a convergence result is established.
    ISSN
    0036-1429
    Revisión por pares
    SI
    DOI
    10.1137/15M103384
    Patrocinador
    Ministerio de Economía, Industria y Competitividad, proyecto MTM2013-46553-C3-1-P y Austrian Science Fund (FWF), projects P21620-N13 and P28645-N35.
    Version del Editor
    http://www.siam.org/journals/sinum.php
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/28912
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    Higher-exponential-Gonzalez-Thalhammer_2016.pdf
    Tamaño:
    485.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10