Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Méndez, María Luz 
dc.contributor.authorMedina Plaza, Cristina
dc.contributor.authorSutter, Peter
dc.contributor.authorTong, Xiang
dc.contributor.authorSutter, Elli
dc.date.accessioned2018-07-11T08:48:54Z
dc.date.issued2015
dc.identifier.citationThe Journal of Physical Chemistry, C vol. 119 p. 25100-25107es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/30594
dc.description.abstractThe presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. The LODs were in the range of 10–5–10–6 M and were lower than those obtained using bulk Au.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleNanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detectiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderAmerican Chemical Society
dc.relation.publisherversionhttps://www.acs.org/
dc.peerreviewedSIes
dc.description.embargo2022-07-7es
dc.description.lift2022-07-07
dc.description.projectResearch carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-SC0012704. EB- 14, University of Valladolid (PIF-UVa) Ministerio de Economía, Industria y Competitividad – FEDER (Grant CICYT AGL2012-3353
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem