Mostrar el registro sencillo del ítem

dc.contributor.authorGutiérrez Tobal, Gonzalo César
dc.contributor.authorÁlvarez González, Daniel
dc.contributor.authorCrespo Senado, Andrea
dc.contributor.authorCampo Matias, Félix del 
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2018-08-31T10:38:19Z
dc.date.available2018-08-31T10:38:19Z
dc.date.issued2019
dc.identifier.citationIEEE Journal of Biomedical and Health Informatics, In Presses
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/31340
dc.descriptionProducción Científicaes
dc.description.abstractComplexity, costs, and waiting lists issues demand a simplified alternative for sleep apnea-hypopnea syndrome (SAHS) diagnosis. The blood oxygen saturation signal (SpO2) carries useful information about SAHS and can be easily acquired from overnight oximetry. In this study, SpO2 single-channel recordings from 320 subjects were obtained at patients’ home. They were used to automatically obtain statistical, spectral, non-linear, and clinical SAHS-related information. Relevant and non-redundant data from these analyses were subsequently used to train and validate four machine-learning methods with ability to classify SpO2 signals into one out of the four SAHS-severity degrees (no-SAHS, mild, moderate, and severe). All the models trained (linear discriminant analysis, 1-vs-all logistic regression, Bayesian multi-layer perceptron, and AdaBoost), outperformed the diagnostic ability of the conventionally-used 3% oxygen desaturation index. An AdaBoost model built with linear discriminants as base classifiers reached the highest figures. It achieved 0.479 Cohen’s  in the SAHS severity classification, as well as 92.9%, 87.4%, and 78.7% accuracies in binary classification tasks using increasing severity thresholds (apnea-hypopnea index: 5, 15, and 30 events/hour, respectively). These results suggest that machine learning can be used along with SpO2 information acquired at patients’ home to help in SAHS diagnosis simplification.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIEEEes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleEvaluation of Machine-Learning Approaches to Estimate Sleep Apnea Severity from at-Home Oximetry Recordingses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holderIEEEes
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/8331839/es
dc.peerreviewedSIes
dc.description.projectThis research has been supported by the project VA037U16 from the Consejería de Educación de la Junta de Castilla y León, the project 265/2012 of the Sociedad Española de Neumología y Cirugía Torácica (SEPAR), the projects RTC-2015-3446-1 and TEC2014-53196-R from the Ministerio de Economía y Competitividad, and the European Regional Development Fund (FEDER). D. Álvarez was in receipt of a Juan de la Cierva grant from the Ministerio de Economía y Competitividades


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem