• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31355

    Título
    A Bayesian neural network approach to compare the spectral information from nasal pressure and thermistor airflow in the automatic sleep apnea severity estimation
    Autor
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    Frutos Arribas, Julio Fernando deAutoridad UVA
    Álvarez González, DanielAutoridad UVA Orcid
    Vaquerizo Villar, FernandoAutoridad UVA Orcid
    Barroso García, VerónicaAutoridad UVA Orcid
    Crespo Senado, Andrea
    Campo Matias, Félix delAutoridad UVA Orcid
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Congreso
    39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
    Año del Documento
    2017
    Descripción
    Producción Científica
    Zusammenfassung
    In the sleep apnea-hypopnea syndrome (SAHS) context, airflow signal plays a key role for the simplification of the diagnostic process. It is measured during the standard diagnostic test by the acquisition of two simultaneous sensors: a nasal prong pressure (NPP) and a thermistor (TH). The current study focuses on the comparison of their spectral content to help in the automatic SAHS-severity estimation. The spectral analysis of 315 NPP and corresponding TH recordings is firstly proposed to characterize the conventional band of interest for SAHS (0.025-0.050 Hz.). A magnitude squared coherence analysis is also conducted to quantify possible differences in the frequency components of airflow from both sensors. Then, a feature selection stage is implemented to assess the relevance and redundancy of the information extracted from the spectrum of NPP and TH airflow. Finally, a multiclass Bayesian multi-layer perceptron (BY-MLP) was used to perform an automatic estimation of SAHS severity (no-SAHS, mild, moderate, and severe), by the use of the selected spectral features from: airflow NPP alone, airflow TH alone, and both sensors jointly. The highest diagnostic performance was reached by BY-MLP only trained with NPP spectral features, reaching Cohen’s  = 0.498 in the overall four-class classification task. It also achieved 91.3%, 84.9%, and 83.3% of accuracy in the binary evaluation of the 3 apnea-hypopnea index cut-offs (5, 15, and 30 events/hour) that define the four SAHS degrees. Our results suggest that TH sensor might be not necessary for SAHS severity estimation if an automatic comprehensive characterization approach is adopted to simplify the diagnostic process
    Patrocinador
    This research was supported by the projects 158/2015 of “Sociedad Española de Neumología y Cirugía Torácica”, TEC2014-53196-R of "Ministerio de Economía y Competitividad (MINECO)" and FEDER, and VA037U16 of "Consejería de Educación de la Junta de Castilla y León”. F. Vaquerizo-Villar is granted with the project PEJ-2014-P-00349 from MINECO and the University of Valladolid. G. C. Gutiérrez-Tobal, V. Barroso-García, F. Vaquerizo-Villar, and R. Hornero, are with the Biomedical Engineering Group, Universidad de Valladolid, Spain (e-mail: gonzalo.gutierrez@gib.tel.uva.es). J. de Frutos, D. Álvarez, Andrea Crespo, and F. del Campo are with the Hospital Universitario Río Hortega of Valladolid, Spain (e-mail: fsas@telefonica.net).
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31355
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • GIB - Comunicaciones a congresos, conferencias, etc. [36]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    EMBC17_0934_FI.pdf
    Tamaño:
    944.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10