• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Comunicaciones a congresos, conferencias, etc.
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31358

    Título
    A Novel Hybrid Swarm Algorithm for P300-Based BCI Channel Selection
    Autor
    Martínez Cagigal, VíctorAutoridad UVA Orcid
    SantaMaría Vazquez, EduardoAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Congreso
    World Congress on Medical Physics & Biomedical Engineering (IUPESM 2018)
    Año del Documento
    2018
    Descripción
    Producción Científica
    Resumen
    Channel selection procedures are essential to reduce the curse of dimensionality in Brain-Computer Interface systems. However, these selection is not trivial, due to the fact that there are 2Nc possible subsets for an Nc channel cap. The aim of this study is to propose a novel multi-objective hybrid algorithm to simultaneously: (i) reduce the required number of channels and (ii) increase the accuracy of the system. The method, which integrates novel concepts based on dedicated searching and deterministic initialization, returns a set of pareto-optimal channel sets. Tested with 4 healthy subjects, the results show that the proposed algorithm is able to reach higher accuracies (97.00%) than the classic MOPSO (96.60%), the common 8-channel set (95.25%) and the full set of 16 channels (96.00%). Moreover, these accuracies have been obtained using less number of channels, making the proposed method suitable for its application in BCI systems.
    Patrocinador
    This study was partially funded by projects TEC2014-53196-R of ‘Ministerio of Economía y Competitividad’ and FEDER, the project “Análisis y correlación entre el genoma completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (Inter-regional cooperation program VA Spain-Portugal POCTEP 2014–202) of the European Commission and FEDER, and project VA037U16 of the ‘Junta de Castilla y León’ and FEDER. V. Martínez-Cagigal was in receipt of a PIF-UVa grant of the University of Valladolid. The authors declare no conflict of interest
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31358
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • GIB - Comunicaciones a congresos, conferencias, etc. [36]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    IUPESM2019_VMartinezCagigal_Proceedings.pdf
    Tamaño:
    482.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10