Mostrar el registro sencillo del ítem
dc.contributor.author | Royuela del Val, Javier | |
dc.contributor.author | Godino Moya, Alejandro | |
dc.contributor.author | Menchon Lara, Rosa María | |
dc.contributor.author | Martín Fernández, Marcos Antonio | |
dc.contributor.author | Alberola López, Carlos | |
dc.date.accessioned | 2018-09-03T18:22:18Z | |
dc.date.available | 2018-09-03T18:22:18Z | |
dc.date.issued | 2017 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/31379 | |
dc.description.abstract | In compressed sensing (CS) dynamic MRI, temporal sparsity is commonly exploited introducing a temporal regularization that affects the dynamic behavior of the images in moving regions. While previous works proposed to combine different sparsity terms accounting for dynamic and static regions in the image, in this work we propose a methodology to dynamically adapt the temporal regularization according to the presence of motion. The proposed method is based on a robust registration technique for non-rigid motion estimation. A variable Density k-space sampling it is applied to highly accelerated breath-hold cine data. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Space-time variant weighted regularization improves motion reconstruction in compressed sensing accelerated cardiac cine MRI | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.title.event | ESMRMB 2017 | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad (Project TEC2014-57428-R) | |
dc.description.project | Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA082U16) | |
dc.rights | Attribution 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
