• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Comunicaciones a congresos, conferencias, etc.
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31407

    Título
    Supporting Group Formation in Ongoing MOOCs using Actionable Predictive Models
    Autor
    Er, ErkanAutoridad UVA Orcid
    Gómez Sánchez, EduardoAutoridad UVA Orcid
    Bote Lorenzo, Miguel LuisAutoridad UVA Orcid
    Asensio Pérez, Juan IgnacioAutoridad UVA Orcid
    Dimitriadis Damoulis, IoannisAutoridad UVA Orcid
    Congreso
    Learning with MOOCs V (LWMOOCS 2018), Madrid, Spain
    Año del Documento
    2018
    Résumé
    Although the massive and open nature of MOOCs necessitates more technology support for instructors, existing prediction research has been barely capable of offering real-world solutions. One critical case where MOOC instructors could benefit from real-time technological support is the design of collaborative activities, in particular group formation. In this regard, this research work investigated the use of in-situ learning technique to produce useful and actionable information that could assist instructors in group formation while the course continues. Focusing on a particular MOOC context, a predictive model was created to compute the probability that students would participate in group discussions or not. Using these probability scores, actual group behavior was also predicted for three cases: at least 2, 3 or 4 different students would post in group discussions. According to the results, the model was able to accurately predict individual student behavior as well as group behavior before the actual collaborative activity had taken place, suggesting its potential for real-time use. Future research involves the exploration of other approaches for creating actionable predictions and the application of the predictions in practice in an ongoing MOOC.
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (Project TIN2017-85179-C3-2-R and RESET TIN2014-53199-C3-2-R)
    Junta de Castilla y León (programa de apoyo a proyectos de investigación – Ref. VA082U16)
    ColMOOC (588438-EPP-1-2017-1-EL-EPPKA2-KA)
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/31407
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP71 - Comunicaciones a congresos, conferencias, etc. [120]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    2018_Erkan_LWMOOCS_CameryReady.pdf
    Tamaño:
    197.2Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10