Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/31423
Título
Online machine learning algorithms to predict link quality in community wireless mesh networks
Autor
Año del Documento
2018
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Computer Networks Volume 132, 2018, Pages 68-80
Resumen
Accurate link quality predictions are key in community wireless mesh networks (CWMNs) to improve the performance of routing protocols. Unlike other techniques, online machine learning algorithms can be used to build link quality predictors that are adaptive without requiring a predeployment effort. However, the use of these algorithms to make link quality predictions in a CWMN has not been previously explored. This paper analyses the performance of 4 well-known online machine learning algorithms for link quality prediction in a CWMN in terms of accuracy and computational load. Based on this study, a new hybrid online algorithm for link quality prediction is proposed. The evaluation of the proposed algorithm using data from a real large scale CWMN shows that it can achieve a high accuracy while generating a low computational load.
Palabras Clave
Aprendizaje automático
ISSN
1389-1286
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA082U16)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA082U16)
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
