Mostrar el registro sencillo del ítem

dc.contributor.authorBote Lorenzo, Miguel Luis 
dc.contributor.authorGómez Sánchez, Eduardo 
dc.contributor.authorMediavilla Pastor, Carlos
dc.contributor.authorAsensio Pérez, Juan Ignacio 
dc.date.accessioned2018-09-06T10:27:45Z
dc.date.available2018-09-06T10:27:45Z
dc.date.issued2018
dc.identifier.citationComputer Networks Volume 132, 2018, Pages 68-80es
dc.identifier.issn1389-1286es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/31423
dc.descriptionProducción Científicaes
dc.description.abstractAccurate link quality predictions are key in community wireless mesh networks (CWMNs) to improve the performance of routing protocols. Unlike other techniques, online machine learning algorithms can be used to build link quality predictors that are adaptive without requiring a predeployment effort. However, the use of these algorithms to make link quality predictions in a CWMN has not been previously explored. This paper analyses the performance of 4 well-known online machine learning algorithms for link quality prediction in a CWMN in terms of accuracy and computational load. Based on this study, a new hybrid online algorithm for link quality prediction is proposed. The evaluation of the proposed algorithm using data from a real large scale CWMN shows that it can achieve a high accuracy while generating a low computational load.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAprendizaje automáticoes
dc.titleOnline machine learning algorithms to predict link quality in community wireless mesh networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.comnet.2018.01.005es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1389128618300069es
dc.peerreviewedSIes
dc.description.projectMinisterio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA082U16)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem