Mostrar el registro sencillo del ítem
dc.contributor.author | Bote Lorenzo, Miguel Luis | |
dc.contributor.author | Gómez Sánchez, Eduardo | |
dc.contributor.author | Mediavilla Pastor, Carlos | |
dc.contributor.author | Asensio Pérez, Juan Ignacio | |
dc.date.accessioned | 2018-09-06T10:27:45Z | |
dc.date.available | 2018-09-06T10:27:45Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Computer Networks Volume 132, 2018, Pages 68-80 | es |
dc.identifier.issn | 1389-1286 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/31423 | |
dc.description | Producción Científica | es |
dc.description.abstract | Accurate link quality predictions are key in community wireless mesh networks (CWMNs) to improve the performance of routing protocols. Unlike other techniques, online machine learning algorithms can be used to build link quality predictors that are adaptive without requiring a predeployment effort. However, the use of these algorithms to make link quality predictions in a CWMN has not been previously explored. This paper analyses the performance of 4 well-known online machine learning algorithms for link quality prediction in a CWMN in terms of accuracy and computational load. Based on this study, a new hybrid online algorithm for link quality prediction is proposed. The evaluation of the proposed algorithm using data from a real large scale CWMN shows that it can achieve a high accuracy while generating a low computational load. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.classification | Aprendizaje automático | es |
dc.title | Online machine learning algorithms to predict link quality in community wireless mesh networks | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | https://doi.org/10.1016/j.comnet.2018.01.005 | es |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1389128618300069 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad (Project TIN2014-53199-C3-2-R) | es |
dc.description.project | Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA082U16) | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International