Mostrar el registro sencillo del ítem

dc.contributor.authorBeelen, Peter
dc.contributor.authorRuano Benito, Diego 
dc.date.accessioned2018-09-25T11:35:47Z
dc.date.available2018-09-25T11:35:47Z
dc.date.issued2013
dc.identifier.citationDesigns, Codes and Cryptography. Volume 66, Issue 1-3, pages 221-230 (2013)es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/31750
dc.descriptionProducción Científicaes
dc.description.abstractIn this article we use techniques from coding theory to derive upper bounds for the number of rational places of the function field of an algebraic curve defined over a finite field. The used techniques yield upper bounds if the (generalized) Weierstrass semigroup for an n-tuple of places is known, even if the exact defining equation of the curve is not known. As shown in examples, this sometimes enables one to get an upper bound for the number of rational places for families of function fields. Our results extend results in [J. Pure Appl. Algebra, 213(6):1152-1156, 2009] .es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleBounding the number of points on a curve using a generalization of Weierstrass semigroupses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s10623-012-9685-3es
dc.peerreviewedSIes
dc.description.projectThis work was supported in part by the Danish FNU grant 272-07-0266, the Danish National Research Foundation and the National Science Foundation of China (Grant No.11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding Theory and Cryptography and by the Spanish grant MTM2007-64704es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem