Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorGordaliza Ramos, Alfonso 
dc.contributor.authorGreselin, Francesca
dc.contributor.authorSalvatore, Ingrassia
dc.contributor.authorMayo Iscar, Agustín 
dc.date.accessioned2018-10-05T21:45:29Z
dc.date.available2018-10-05T21:45:29Z
dc.date.issued2018
dc.identifier.citationAdvances in Data Analysis and Classification, 2018, vol. 12. p. 203-233es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/32021
dc.description.abstractThis paper presents a review about the usage of eigenvalues restrictions for constrained parameter estimation in mixtures of elliptical distributions according to the likelihood approach. These restrictions serve a twofold purpose: to avoid convergence to degenerate solutions and to reduce the onset of non interesting (spurious) maximizers, related to complex likelihood surfaces. The paper shows how the constraints may play a key role in the theory of Euclidean data clustering. The aim here is to provide a reasoned review of the constraints and their applications, along the contributions of many authors, spanning the literature of the last thirty years.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleEigenvalues and constraints in mixture modeling: geometric and computational issueses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1007/s11634-017-0293-y
dc.peerreviewedSIes
dc.description.projectSpanish Ministerio de Economía y Competitividad (grant MTM2017-86061-C2-1-P)es
dc.description.projectJunta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA005P17 and VA002G18)
dc.rightsAttribution 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem