Mostrar el registro sencillo del ítem
dc.contributor.author | Obaya, Rafael | |
dc.contributor.author | Sanz Gil, Ana María | |
dc.date.accessioned | 2018-10-08T13:21:39Z | |
dc.date.available | 2018-10-08T13:21:39Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Nonlinearity, Febrero 2018, vol 31, n. 2, p. 388-413 | es |
dc.identifier.issn | 0951-7715 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/32031 | |
dc.description | Producción Científica | es |
dc.description.abstract | Using techniques of non-autonomous dynamical systems, we completely characterize the persistence properties of an almost periodic Nicholson system in terms of some numerically computable exponents. Although similar results hold for a class of cooperative and sublinear models, in the general nonautonomous setting one has to consider persistence as a collective property of the family of systems over the hull: the reason is that uniform persistence is not a robust property in models given by almost periodic differential equations. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IOP Publishing Ltd and London Mathematical Society | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.subject.classification | Non-autonomous dynamical systems | es |
dc.subject.classification | Almost periodic Nicholson systems | es |
dc.subject.classification | Uniform and strict persistence | es |
dc.subject.classification | Mathematical biology | es |
dc.title | Is uniform persistence a robust property in almost periodic models? A well-behaved family: almost periodic Nicholson systems | es |
dc.type | info:eu-repo/semantics/article | es |
dc.identifier.doi | 10.1088/1361-6544/aa92e7 | es |
dc.relation.publisherversion | http://iopscience.iop.org/article/10.1088/1361-6544/aa92e7 | es |
dc.peerreviewed | SI | es |
dc.description.project | MINECO / FEDER grant MTM2015-66330-P | es |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/643073 |