• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33054

    Título
    Detección automática de la presencia de patología ocular en retinografías empleando técnicas de procesado de imágenes
    Autor
    Peña Lorenzo, José María
    Director o Tutor
    García Gadañón, MaríaAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de TelecomunicaciónAutoridad UVA
    Año del Documento
    2018
    Titulación
    Grado en Ingeniería de Tecnologías de Telecomunicación
    Zusammenfassung
    La vista es uno de los sentidos de mayor importancia para la vida humana. En los últimos años el número de enfermedades oculares ha aumentado y las predicciones de los científicos es que van a seguir aumentando en los próximos años. Existen enfermedades oculares que se han convertido en importantes causas de pérdida de visión a nivel mundial como la retinopatía diabética (RD), el glaucoma, la degeneración macular asociada a la edad (DMAE) y las cataratas. Estas enfermedades oculares suelen provocar alteraciones en el ojo humano, que pueden detectarse observando el ojo. Una de las técnicas más extendidas para observar el fondo del ojo es la retinografía, que es una imagen digital a color de la retina. Esta imagen es muy útil para el diagnóstico de enfermedades que afectan al ojo como RD y DMAE, entre otras. No obstante, la creciente incidencia de algunas enfermedades oculares y la escasez de oftalmólogos especialistas provoca que el análisis de las retinografías sea una tarea compleja y laboriosa. El objetivo de este Trabajo Fin de Grado (TFG) ha sido el diseño y desarrollo de un método automático para diferenciar entre retinografías patológicas y no patológicas. Este método permitiría ayudar en el diagnóstico y cribado de los pacientes con enfermedades oculares y reducir la carga de trabajo a los oftalmólogos. Para ello, se partió de una base de datos (BD) formada por 1044 imágenes de calidad adecuada para su procesado automático. De ellas, 326 pertenecían a sujetos sanos y a 819 pacientes con algún tipo de patología. Estas imágenes se dividieron en un conjunto de entrenamiento (559 imágenes) y un conjunto de test (585 imágenes). En todos los casos, un oftalmólogo especialista indicó si las imágenes eran normales o patológicas.
    Palabras Clave
    Entropía
    Máquina de vectores soporte
    Patologías
    Retinografías
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/33054
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30865]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    TFG-G3427.pdf
    Tamaño:
    3.098Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternationalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 International

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10