Mostrar el registro sencillo del ítem
dc.contributor.advisor | García Gadañón, María | es |
dc.contributor.author | Peña Lorenzo, José María | |
dc.contributor.editor | Universidad de Valladolid. Escuela Técnica Superior de Ingenieros de Telecomunicación | es |
dc.date.accessioned | 2018-11-29T10:42:24Z | |
dc.date.available | 2018-11-29T10:42:24Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/33054 | |
dc.description.abstract | La vista es uno de los sentidos de mayor importancia para la vida humana. En los últimos años el número de enfermedades oculares ha aumentado y las predicciones de los científicos es que van a seguir aumentando en los próximos años. Existen enfermedades oculares que se han convertido en importantes causas de pérdida de visión a nivel mundial como la retinopatía diabética (RD), el glaucoma, la degeneración macular asociada a la edad (DMAE) y las cataratas. Estas enfermedades oculares suelen provocar alteraciones en el ojo humano, que pueden detectarse observando el ojo. Una de las técnicas más extendidas para observar el fondo del ojo es la retinografía, que es una imagen digital a color de la retina. Esta imagen es muy útil para el diagnóstico de enfermedades que afectan al ojo como RD y DMAE, entre otras. No obstante, la creciente incidencia de algunas enfermedades oculares y la escasez de oftalmólogos especialistas provoca que el análisis de las retinografías sea una tarea compleja y laboriosa. El objetivo de este Trabajo Fin de Grado (TFG) ha sido el diseño y desarrollo de un método automático para diferenciar entre retinografías patológicas y no patológicas. Este método permitiría ayudar en el diagnóstico y cribado de los pacientes con enfermedades oculares y reducir la carga de trabajo a los oftalmólogos. Para ello, se partió de una base de datos (BD) formada por 1044 imágenes de calidad adecuada para su procesado automático. De ellas, 326 pertenecían a sujetos sanos y a 819 pacientes con algún tipo de patología. Estas imágenes se dividieron en un conjunto de entrenamiento (559 imágenes) y un conjunto de test (585 imágenes). En todos los casos, un oftalmólogo especialista indicó si las imágenes eran normales o patológicas. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.classification | Entropía | es |
dc.subject.classification | Máquina de vectores soporte | es |
dc.subject.classification | Patologías | es |
dc.subject.classification | Retinografías | es |
dc.title | Detección automática de la presencia de patología ocular en retinografías empleando técnicas de procesado de imágenes | es |
dc.type | info:eu-repo/semantics/bachelorThesis | es |
dc.description.degree | Grado en Ingeniería de Tecnologías de Telecomunicación | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Trabajos Fin de Grado UVa [29810]
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International