• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Máster UVa
    • Dokumentanzeige
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Máster UVa
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33362

    Título
    Health monitoring of a TriGen plant: a Big Data proposal
    Autor
    Arias Requejo, Desirée
    Director o Tutor
    Alonso González, Carlos JavierAutoridad UVA
    Pulido Junquera, José BelarminoAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingeniería Informática de ValladolidAutoridad UVA
    Año del Documento
    2018
    Titulación
    Máster en Ingeniería Informática
    Zusammenfassung
    Nowadays, energy efficiency is becoming a critical factor in factories all over the world. Thanks to proper and timely monitoring of the operation and performance of the factories, remarkable energy savings can be obtained. This project aims to perform health monitoring in large factories or corporations by means of data-driven techniques. Specifically several machine learning models will be developed to perform fault detection. This monitoring includes fault detection and fault prediction of any of the components of the factory. This project relies upon previous work done during an internship in the National University of Ireland at Galway in which the log files of the Boston Scientific Corporation's (BSC) tri-generation plant were studied. This work contains a Big Data architecture's proposal to store all the data from both the logs of the tri-generation plant and the simulation data obtained for the absorption chiller subsystem within the tri-generation plant (due to the lack of discriminative information about faulty behaviour in the real data), and a conceptual data model to describe the relationships, entities and attributes of that data. The Machine Learning models have been tested successfully in the absorption chiller subsystem, providing promising results.
    Palabras Clave
    Health monitoring
    TriGen plant
    Big Data proposal
    Departamento
    Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33362
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7002]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    TFM-G961.pdf
    Tamaño:
    96.34Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10