Mostrar el registro sencillo del ítem
dc.contributor.author | Gadella Urquiza, Manuel | |
dc.contributor.author | Lara, Luis | |
dc.date.accessioned | 2018-12-19T13:52:28Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | International Journal of Modern Physics C, 2018, vol. 29, n. 8, 1850067 | es |
dc.identifier.issn | 0129-1831 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/33584 | |
dc.description | Producción Científica | es |
dc.description.abstract | In this paper, we discuss a method based on a segmentary approximation of solutions of the Schrödinger equation by quadratic splines, for which the coefficients are determined by a variational method that does not require the resolution of complicated algebraic equations. The idea is the application of the method to one-dimensional periodic potentials. We include the determination of the eigenvalues up to a given level, and therefore an approximation to the lowest energy bands. We apply the method to concrete examples with interest in physics and discussed the numerical errors. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | World Scientific Publishing | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.title | A study of periodic potentials based on quadratic splines | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2018 World Scientific Publishing | es |
dc.identifier.doi | 10.1142/S0129183118500675 | es |
dc.relation.publisherversion | https://www.worldscientific.com/doi/10.1142/S0129183118500675 | es |
dc.peerreviewed | SI | es |
dc.description.embargo | 2019-08-03 | es |
dc.description.lift | 2019-08-03 | |
dc.description.project | Ministerio de Economía, Industria y Competitividad (project MTM2014-57129) | es |
dc.description.project | Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA057U16) | es |