Mostrar el registro sencillo del ítem

dc.contributor.authorGadella Urquiza, Manuel 
dc.contributor.authorLara, Luis
dc.date.accessioned2018-12-19T13:52:28Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Modern Physics C, 2018, vol. 29, n. 8, 1850067es
dc.identifier.issn0129-1831es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33584
dc.descriptionProducción Científicaes
dc.description.abstractIn this paper, we discuss a method based on a segmentary approximation of solutions of the Schrödinger equation by quadratic splines, for which the coefficients are determined by a variational method that does not require the resolution of complicated algebraic equations. The idea is the application of the method to one-dimensional periodic potentials. We include the determination of the eigenvalues up to a given level, and therefore an approximation to the lowest energy bands. We apply the method to concrete examples with interest in physics and discussed the numerical errors.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherWorld Scientific Publishinges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleA study of periodic potentials based on quadratic splineses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2018 World Scientific Publishinges
dc.identifier.doi10.1142/S0129183118500675es
dc.relation.publisherversionhttps://www.worldscientific.com/doi/10.1142/S0129183118500675es
dc.peerreviewedSIes
dc.description.embargo2019-08-03es
dc.description.lift2019-08-03
dc.description.projectMinisterio de Economía, Industria y Competitividad (project MTM2014-57129)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA057U16)es


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem