Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33592
Título
Interplay between Riccati, Ermakov, and Schrödinger equations to produce complex‐valued potentials with real energy spectrum
Año del Documento
2018
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
Mathematical Methods in the Applied Sciences, 2018
Resumen
Nonlinear Riccati and Ermakov equations are combined to pair the energy spectrum of 2 different quantum systems via the Darboux method. One of the systems is assumed Hermitian, exactly solvable, with discrete energies in its spectrum. The other system is characterized by a complex‐valued potential that inherits all the energies of the former one and includes an additional real eigenvalue in its discrete spectrum. If such eigenvalue coincides with any discrete energy (or it is located between 2 discrete energies) of the initial system, its presence produces no singularities in the complex‐valued potential. Non‐Hermitian systems with spectrum that includes all the energies of either Morse or trigonometric Pöschl‐Teller potentials are introduced as concrete examples.
Palabras Clave
Matemáticas
Teoría cuántica
mathematical
Quantum theory
ISSN
0170-4214
Revisión por pares
SI
DOI
Patrocinador
Ministerio de Economía, Industria y Competitividad (Project MTM2014-57129-C2-1-P)
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA057U16)
CONACyT Scholarships. Grant Numbers: 45454, 489856
Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA057U16)
CONACyT Scholarships. Grant Numbers: 45454, 489856
Version del Editor
Idioma
eng
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International