• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Grupos de Investigación
    • Física Matemática
    • FM - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/33629

    Título
    Global versus local superintegrability of nonlinear oscillators
    Autor
    Anco, S.C.
    Ballesteros Castañeda, ÁngelAutoridad UVA
    Gandarias, María Luz
    Año del Documento
    2019
    Documento Fuente
    Physics Letters A, to appear (2019)
    Resumen
    Liouville (super)integrability of a Hamiltonian system of differential equations is based on the existence of globally well-defined constants of the motion, while Lie point symmetries provide a local approach to conserved integrals. Therefore, it seems natural to investigate in which sense Lie point symmetries can be used to provide information concerning the superintegrability of a given Hamiltonian system. The two-dimensional oscillator and the central force problem are used as benchmark examples to show that the relationship between standard Lie point symmetries and superintegrability is neither straightforward nor universal. In general, it turns out that super-integrability is not related to either the size or the structure of the algebra of variational dynamical symmetries. Nevertheless, all of the first integrals for a given Hamiltonian system can be obtained through an extension of the standard point symmetry method, which is applied to a superintegrable nonlinear oscillator describing the motion of a particle on a space with non-constant curvature and spherical symmetry.
    Revisión por pares
    SI
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/33629
    Derechos
    openAccess
    Aparece en las colecciones
    • FM - Artículos de revista [134]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    1809.02248.pdf
    Tamaño:
    194.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10