Mostrar el registro sencillo del ítem

dc.contributor.authorBallesteros Castañeda, Ángel
dc.contributor.authorCampoamor Stursberg, Rutwig
dc.contributor.authorFernandez Saiz, Eduardo
dc.contributor.authorHerranz, F.J.
dc.contributor.authorLucas Veguillas, Javier de
dc.date.accessioned2018-12-21T17:13:09Z
dc.date.available2018-12-21T17:13:09Z
dc.date.issued2018
dc.identifier.citationDobrev, V. (ed.). Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics Volume 1, 2018. p. 347-366es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/33632
dc.descriptionProducción Científica
dc.description.abstractBased on a recently developed procedure to construct Poisson-Hopf deformations of Lie–Hamilton systems, a novel unified approach to nonequivalent deformations of Lie–Hamilton systems on the real plane with a Vessiot–Guldberg Lie algebra isomorphic to sl(2) is proposed. This, in particular, allows us to define a notion of Poisson–Hopf systems in dependence of a parameterized family of Poisson algebra representations. Such an approach is explicitly illustrated by applying it to the three non-diffeomorphic classes of sl(2) Lie–Hamilton systems. Our results cover deformations of the Ermakov system, Milne–Pinney, Kummer–Schwarz and several Riccati equations as well as of the harmonic oscillator (all of them with t-dependent coefficients). Furthermore t-independent constants of motion are given as well. Our methods can be employed to generate other Lie–Hamilton systems and their deformations for other Vessiot–Guldberg Lie algebras and their deformations.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleA unified approach to Poisson-Hopf deformations of Lie-Hamilton systems based on sl(2)es
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.publicationfirstpage347es
dc.peerreviewedSIes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem