Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez Rodríguez, Elisa
dc.contributor.authorLópez, Juan Carlos
dc.contributor.authorPrieto Ferrero, Patricia
dc.contributor.authorMerchán Catalina, Laura
dc.contributor.authorGarcía Encina, Pedro Antonio 
dc.contributor.authorLebrero Fernández, Raquel 
dc.contributor.authorMuñoz Torre, Raúl 
dc.date.accessioned2019-03-21T10:36:04Z
dc.date.available2019-03-21T10:36:04Z
dc.date.issued2018
dc.identifier.citationChemosphere, 2018, Volume 212, Pages 319-329es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/35164
dc.descriptionProducción Científicaes
dc.description.abstractThe ability of methanotrophs to rapidly respond to intentional or accidental stress conditions caused by operational failures or process fluctuations is of utmost importance to guarantee the robustness of CH4 abatement biotechnologies. In this study, the performance of a continuous and two feast-famine (5:5 days feast-famine cycles) stirred tank reactors treating diluted CH4 emissions (4–5% v/v) was comparatively assessed for 149 days. The robustness of the three bioreactors towards a 5 days CH4 deprivation episode was thoroughly evaluated at a molecular level (pmoA gene expression level) and correlated to macroscopic process performance. The bioreactors recovered their steady-state abatement performance (in terms of CH4 elimination capacity and CO2 production rate) within 1.5–2 h following CH4 supply resumption concomitantly with a maximum in pmoA gene expression, regardless of the previous operational mode. However, while methanotrophs from the continuous unit maintained higher basal levels of pmoA expression as a strategy for a rapid CH4 metabolism initiation, the strategy of the feast-famine adapted-methanotrophs consisted on a more accurate regulation of their pmoA transcripts levels along with a higher and/or more rapid induction of the pmoA gene by CH4 availability.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationTratamiento de gaseses
dc.subject.classificationGas treatmentes
dc.subject.classificationMetanoes
dc.subject.classificationMethanees
dc.titleQuantitative analysis of methane monooxygenase (MMO) explains process robustness in continuous and feast-famine bioreactors treating methanees
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.chemosphere.2018.08.091es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0045653518315662es
dc.peerreviewedNOes
dc.description.projectMinisterio de Economía, Industria y Competitividad- FEDER (Proyect CTM2015-70442-R and Red Novedar)es
dc.description.projectJuan de la Cierva Program (IJCI-2014-19432)es
dc.description.projectJunta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. Project UIC71)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem