Mostrar el registro sencillo del ítem

dc.contributor.authorBravo, Ana
dc.contributor.authorEncinas Carrión, Santiago 
dc.contributor.authorPascual Escudero, Beatriz
dc.date.accessioned2019-04-30T12:00:49Z
dc.date.available2019-04-30T12:00:49Z
dc.date.issued2017
dc.identifier.citationCollectanea Mathematica, 2017, vol. 68, n. 2, p. 175–217es
dc.identifier.issn0010-0757es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/35894
dc.descriptionProducción Científicaes
dc.description.abstractThe Nash multiplicity sequence was defined by M. Lejeune-Jalabert as a non-increasing sequence of integers attached to a germ of a curve inside a germ of a hypersurface. M. Hickel generalized this notion and described a sequence of blow ups which allows us to compute it and study its behavior. In this paper, we show how this sequence can be used to compute some invariants that appear in algorithmic resolution of singularities. Moreover, this indicates that these invariants from constructive resolution are intrinsic to the variety since they can be read in terms of its space of arcs. This result is a first step connecting explicitly arc spaces and algorithmic resolution of singularities.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherSpringeres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationAlgebraes
dc.subject.classificationResolution of singularitieses
dc.titleNash multiplicities and resolution invariantses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2017 Springeres
dc.identifier.doi10.1007/s13348-016-0188-9
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs13348-016-0188-9#Bib1es
dc.peerreviewedSIes
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem