Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/35969
Título
Proportionally modular affine semigroups
Año del Documento
2018
Editorial
World Scientific
Descripción
Producción Científica
Documento Fuente
Journal of Algebra and Its Applications, 2018, vol. 17, n. 1. 7 p.
Abstract
This work introduces a new kind of semigroup of Np called proportionally modular affine semigroup. These semigroups are defined by modular
Diophantine inequalities and they are a generalization of proportionally
modular numerical semigroups. We give an algorithm to compute their
minimal generating sets. We also specialize on the case p = 2. For this
case, we provide a faster algorithm to compute their minimal system of
generators, prove they are Cohen-Macaulay and Buchsbaum, and determinate their (minimal) Frobenius vectors. Besides, Gorenstein proportionally modular affine semigroups are characterized.
Palabras Clave
Affine numerical semigroups
Semigrupos numéricos afines
Buchsbaum ring
Anillo de Buchsbaum
Cohen-Macaulay ring
Anillo de Cohen-Macaulay
Gorenstein ring
Anillo de Gorenstein
Numerical monoid
Monoide numérico
ISSN
1793-6829
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad ( grants MTM2014-55367-P / MTM2015-65764- C3-1-P)
Junta de Andalucía (FQM-366 / FQM-298)
Junta de Andalucía (FQM-366 / FQM-298)
Version del Editor
Propietario de los Derechos
© 2018 World Scientific
Idioma
eng
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International