Mostrar el registro sencillo del ítem
dc.contributor.author | Campillo López, Antonio | |
dc.contributor.author | Olivares, Jorge | |
dc.date.accessioned | 2019-05-24T10:41:16Z | |
dc.date.available | 2019-05-24T10:41:16Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Journal of Singularities, 2018, vol. 18. p. 105-113 | es |
dc.identifier.issn | 1949-2006 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/36080 | |
dc.description | Producción Científica | es |
dc.description.abstract | It is well-known that a foliation by curves of degree greater than or equal to two, with isolated singularities, in the complex projective space of dimension greater than or equal to two, is uniquely determined by the scheme of its singular points. The main result in this paper is that the set of foliations which are uniquely determined by a subscheme (of the minimal possible degree) of its singular points, contains a nonempty Zariski-open subset. Our results hold in the projective space defined over any algebraically closed ground field. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Worldwide Center of Mathematics LLC | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.classification | Foliations by curves | es |
dc.subject.classification | Foliaciones por curvas | es |
dc.subject.classification | Singular points | es |
dc.subject.classification | Puntos singulares | es |
dc.title | Foliations by curves uniquely determined by minimal subschemes of its singularities | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2018 Worldwide Center of Mathematics LLC | es |
dc.identifier.doi | https://doi.org/10.5427/jsing.2018.18g | es |
dc.relation.publisherversion | http://www.journalofsing.org/volume18/article7.html | es |
dc.peerreviewed | SI | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International