Show simple item record

dc.contributor.authorFlora, Tatjana
dc.contributor.authorGonzález de Torre, Israel 
dc.contributor.authorAlonso Rodrigo, Matilde 
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.date.accessioned2019-06-25T10:41:24Z
dc.date.available2019-06-25T10:41:24Z
dc.date.issued2019
dc.identifier.citationBiofabrication, 2019, vol. 11, n. 3. 16 p.es
dc.identifier.issn1758-5090es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/36422
dc.descriptionProducción Científicaes
dc.description.abstractControl over biodegradation processes is crucial to generate advanced functional structures with a more interactive and efficient role for biomedical applications. Herein, a simple, high-throughput approach is developed based on a 3D-structured system that allows a preprogramed spatial-temporal control over cell infiltration and biodegradation. The 3D-structured system is based on elastin-like recombinamers (ELRs) characterized by differences in the kinetics of their peptide cleavage and consists of a three-layer hydrogel disk comprising an internal layer containing a rapidly degrading component, with the external layers containing a slow-degrading ELR. This structure is intended to invert the conventional pattern of cell infiltration, which goes from the outside to the inside of the implant, to allow an anti-natural process in which infiltration takes place first in the internal layer and later progresses to the outer layers. Time-course in vivo studies proved this hypothesis, i.e. that it is possible to drive the infiltration of cells over time in a given 3D-structured implant in a controlled and predesigned way that is able to overcome the natural tendency of conventional cell infiltration. The results obtained herein open up the possibility of applying this concept to more complex systems with multiple biological functions.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherIOP Publishinges
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiomaterialses
dc.subjectBiomaterialeses
dc.subjectAngiogenesises
dc.subjectAngiogénesises
dc.subjectElastin-like recombinamerses
dc.subjectRecombinantes tipo elastinaes
dc.subject.classification3D systemes
dc.subject.classificationSistema 3Des
dc.titleUse of proteolytic sequences with different cleavage kinetics as a way to generate hydrogels with preprogrammed cell-infiltration patterns imparted over their given 3D spatial structurees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 IOP Publishinges
dc.identifier.doihttps://doi.org/10.1088/1758-5090/ab10a5es
dc.relation.publisherversionhttps://iopscience.iop.org/article/10.1088/1758-5090/ab10a5es
dc.peerreviewedSIes
dc.description.projectEuropean Commission (NMP-2014-646075, PITNGA-2012-317306)es
dc.description.projectMinisterio de Economía, Industria y Competitividad ( grants PCIN-2015-010, MAT2015-68901-R, MAT2016-78903-R, MAT2016-79435-R)es
dc.description.projectJunta de Castilla y León (VA015U16)es
dc.description.projectCentro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leónes
dc.identifier.essn1758-5090es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record