dc.contributor.author | Flora, Tatjana | |
dc.contributor.author | González de Torre, Israel | |
dc.contributor.author | Alonso Rodrigo, Matilde | |
dc.contributor.author | Rodríguez Cabello, José Carlos | |
dc.date.accessioned | 2019-06-25T10:41:24Z | |
dc.date.available | 2019-06-25T10:41:24Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Biofabrication, 2019, vol. 11, n. 3. 16 p. | es |
dc.identifier.issn | 1758-5090 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/36422 | |
dc.description | Producción Científica | es |
dc.description.abstract | Control over biodegradation processes is crucial to generate advanced functional structures with a more interactive and efficient role for biomedical applications. Herein, a simple, high-throughput approach is developed based on a 3D-structured system that allows a preprogramed spatial-temporal control over cell infiltration and biodegradation. The 3D-structured system is based on elastin-like recombinamers (ELRs) characterized by differences in the kinetics of their peptide cleavage and consists of a three-layer hydrogel disk comprising an internal layer containing a rapidly degrading component, with the external layers containing a slow-degrading ELR. This structure is intended to invert the conventional pattern of cell infiltration, which goes from the outside to the inside of the implant, to allow an anti-natural process in which infiltration takes place first in the internal layer and later progresses to the outer layers. Time-course in vivo studies proved this hypothesis, i.e. that it is possible to drive the infiltration of cells over time in a given 3D-structured implant in a controlled and predesigned way that is able to overcome the natural tendency of conventional cell infiltration. The results obtained herein open up the possibility of applying this concept to more complex systems with multiple biological functions. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | IOP Publishing | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Biomaterials | es |
dc.subject | Biomateriales | es |
dc.subject | Angiogenesis | es |
dc.subject | Angiogénesis | es |
dc.subject | Elastin-like recombinamers | es |
dc.subject | Recombinantes tipo elastina | es |
dc.subject.classification | 3D system | es |
dc.subject.classification | Sistema 3D | es |
dc.title | Use of proteolytic sequences with different cleavage kinetics as a way to generate hydrogels with preprogrammed cell-infiltration patterns imparted over their given 3D spatial structure | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 IOP Publishing | es |
dc.identifier.doi | 10.1088/1758-5090/ab10a5 | es |
dc.relation.publisherversion | https://iopscience.iop.org/article/10.1088/1758-5090/ab10a5 | es |
dc.peerreviewed | SI | es |
dc.description.project | European Commission (NMP-2014-646075, PITNGA-2012-317306) | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad ( grants PCIN-2015-010, MAT2015-68901-R, MAT2016-78903-R, MAT2016-79435-R) | es |
dc.description.project | Junta de Castilla y León (VA015U16) | es |
dc.description.project | Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León | es |
dc.identifier.essn | 1758-5090 | es |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |