Mostrar el registro sencillo del ítem

dc.contributor.authorPutzu, M.
dc.contributor.authorCausa, F.
dc.contributor.authorParente, Manuel
dc.contributor.authorGonzález de Torre, Israel 
dc.contributor.authorRodríguez Cabello, José Carlos 
dc.contributor.authorNetti, P.A.
dc.date.accessioned2019-06-25T11:52:40Z
dc.date.available2019-06-25T11:52:40Z
dc.date.issued2019
dc.identifier.citationRegenerative Biomaterials, 2019, vol. 6, n. 1. p. 21–28es
dc.identifier.issn2056-3426es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/36431
dc.descriptionProducción Científicaes
dc.description.abstractIn the field of tissue engineering the choice of materials is of great importance given the possibility to use biocompatible polymers produced by means of biotechnology. A large number of synthetic and natural materials have been used to this purpose and processed into scaffolds using Electrospinning technique. Among materials that could be used for the fabrication of scaffold and degradable membranes, natural polymers such as collagen, elastin or fibroin offer the possibility to design structures strictly similar to the extracellular matrix (ECM). Biotechnology and genetic engineering made possible the advent of a new class of biopolymers called protein-based polymers. One example is represented by the silk-elastin-proteins that combine the elasticity and resilience of elastin with the high tensile strength of silk-fibroin and display engineered bioactive sequences. In this work, we use electrospinning technique to produce a fibrous scaffold made of the corecombinamer Silk-ELR. Obtained fibres have been characterized from the morphological point of view. Homogeneity and morphology have been explored using Scanning Electron Microscopy. A thorough study regarding the influence of Voltage, flow rate and distance have been carried out to determine the appropriate parameters to obtain the fibrous mats without defects and with a good distribution of diameters. Cytocompatibility has also been in vitro tested. For the first time we use the co-recombinamer Silk-ELR for the fabrication of a 2.5 angioplasty balloon coating. This structure could be useful as a coated scaffold for the regeneration of intima layer of vessels.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherOxford University Presses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectElastin-like recombinamerses
dc.subjectRecombinantes tipo elastinaes
dc.subjectTissue engineeringes
dc.subjectIngeniería de tejidoses
dc.subject.classificationElectrospinninges
dc.subject.classificationElectrohiladoes
dc.titleSilk-ELR co-recombinamer covered stents obtained by electrospinninges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 Oxford University Presses
dc.identifier.doihttps://doi.org/10.1093/rb/rby022es
dc.relation.publisherversionhttps://academic.oup.com/rb/article/6/1/21/5146764es
dc.peerreviewedSIes
dc.description.project“THE GRAIL” (Tissue in Host Engineering Guided Regeneration of Arterial Intima Layer) projectes
dc.description.projectEuropean Union’s ‘Seventh Framework’ Programme for research, technological development and demonstration (grant HEALTH.2011.1.4-2-278557)es
dc.description.projectEuropean Commission (NMP-2014- 646075, MSCA-ITN-2014-642687)es
dc.description.projectMinisterio de Economía, Industria y Competitividad (grant PCIN-2015-010, MAT2015-68901-R, MAT2016- 78903-R)es
dc.description.projectJunta de Castilla y León (VA015U16)es
dc.description.projectCentro en Red de Medicina Regenerativa y Terapia Celular de Castilla y Leónes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/278557
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem