Mostrar el registro sencillo del ítem
dc.contributor.author | Pitarch Pérez, José Luis | |
dc.contributor.author | Sala, Antonio | |
dc.contributor.author | Prada Moraga, César de | |
dc.date.accessioned | 2019-07-10T15:27:06Z | |
dc.date.available | 2019-07-10T15:27:06Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019: Florianópolis, Brazil, 23–26 April 2019 Edited by Benoit Chachuat, Olivier Bernard, Julio E. Normey-Rico | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/36806 | |
dc.description | Producción Científica | es |
dc.description.abstract | Combining empirical relationships with a backbone of first-principle laws allow the modeler to transfer the available process knowledge into a model. In order to get such so-called grey-box models, data reconciliation methods and constrained regression algorithms are key to obtain reliable process models that will be used later for optimization. However, the existent approaches require solving a semi-infinite constrained regression nonlinear problem, which is usually done numerically by an iterative procedure alternating between a relaxed problem and an a posteriori check for constraint violation. This paper proposes an alternative one-stage efficient approach for polynomial regression models based in sum-of-squares (convex) programming. Moreover, it is shown how several desirable features on the regression model can be naturally enforced in this optimization framework. The effectiveness of the proposed approach is illustrated through an academic example provided in the related literature. | es |
dc.format.extent | 6 p. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Elsevier | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject.classification | Constrained regression | es |
dc.subject.classification | Process models | es |
dc.subject.classification | Grey-box models | es |
dc.subject.classification | SOS programming | es |
dc.title | A Sum-Of-Squares Constrained Regression Approach for Process Modeling | es |
dc.type | info:eu-repo/semantics/conferenceObject | es |
dc.rights.holder | Elsevier | es |
dc.identifier.doi | 10.1016/j.ifacol.2019.06.152 | es |
dc.relation.publisherversion | https://doi.org/10.1016/j.ifacol.2019.06.152 | es |
dc.title.event | 12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems DYCOPS 2019 | es |
dc.description.project | European Union, Horizon 2020 research and innovation programme under grant agreement No 723575 (CoPro) | es |
dc.description.project | MINECO DPI2016-81002-R (AEI/FEDER) | es |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/723575 | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/updatedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional