• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Economía Aplicada
    • DEP20 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/37937

    Título
    An analysis of Winsorized weighted means
    Autor
    Llamazares Rodríguez, BonifacioAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Group Decision and Negotiation, 2019, vol. 28, n. 5, 907-933.
    Resumo
    The Winsorized mean is a well-known robust estimator of the population mean. It can also be seen as a symmetric aggregation function (in fact, it is an ordered weighted averaging operator), which means that the information sources (for instance, criteria or experts’ opinions) have the same importance. However, in many practical applications (for instance, in many multiattribute decision making problems) it is necessary to consider that the information sources have different importance. For this reason, in this paper we propose a natural generalization of the Winsorized means so that the sources of information can be weighted differently. The new functions, which we will call Winsorized weighted means, are a specific case of the Choquet integral and they are analyzed through several indices for which we give closed-form expressions: the orness degree, k-conjunctiveness and k-disjunctiveness indices, veto and favor indices, Shapley values and interaction indices. We also provide a closed-form expression for the Möbius transform and we show how we can aggregate data so that each information source has the desired weighting and outliers have no influence in the aggregated value.
    Palabras Clave
    Winsorized weighted means
    Winsorized means
    Choquet integral
    Shapley values
    SUOWA operators
    ISSN
    0926-2644
    Revisión por pares
    SI
    DOI
    10.1007/s10726-019-09623-8
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: MEC-FEDER Grant ECO2016-77900-P
    Version del Editor
    https://link.springer.com/article/10.1007%2Fs10726-019-09623-8
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/37937
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP20 - Artículos de revista [181]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2019GDN.pdf
    Tamaño:
    349.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10