Mostrar el registro sencillo del ítem

dc.contributor.authorCano Urdiales, Begoña 
dc.contributor.authorDurán Martín, Ángel 
dc.date.accessioned2019-09-16T11:38:04Z
dc.date.available2019-09-16T11:38:04Z
dc.date.issued2019
dc.identifier.citationJournal of Computational and Applied Mathematics *, *, p. *-*es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/37954
dc.description.abstractIn this paper the one-dimensional nonparaxial nonlinear Schrödinger equation is considered. This was proposed as an alternative to the classical nonlinear Schrödinger equation in those situations where the assumption of paraxiality may fail. The paper contributes to the mathematical properties of the equation in a two-fold way. First, some theoretical results on linear well-posedness, Hamiltonian and multi-symplectic formulations are derived. Then we propose to take into account these properties in order to deal with the numerical approximation. In this sense, different numerical procedures that preserve the Hamiltonian and multi-symplectic structures are discussed and illustrated with numerical experiments.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleOn nonparaxial nonlinear Schrödinger-type equationses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.cam.2019.02.029es
dc.peerreviewedSIes
dc.type.hasVersioninfo:eu-repo/semantics/submittedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem