Mostrar el registro sencillo del ítem

dc.contributor.authorEr, Erkan 
dc.contributor.authorGómez Sánchez, Eduardo 
dc.contributor.authorBote Lorenzo, Miguel Luis 
dc.contributor.authorDimitriadis Damoulis, Ioannis 
dc.contributor.authorAsensio Pérez, Juan Ignacio 
dc.date.accessioned2019-10-21T10:20:44Z
dc.date.available2019-10-21T10:20:44Z
dc.date.issued2019
dc.identifier.citationBehaviour & Information Technology, in press, 2019es
dc.identifier.issn1362-3001es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/38655
dc.descriptionProducción Científicaes
dc.description.abstractPeer review is one approach to facilitate formative feedback exchange in MOOCs; however, it is often undermined by low participation. To support effective implementation of peer reviews in MOOCs, this research work proposes several predictive models to accurately classify learners according to their expected engagement levels in an upcoming peer-review activity, which offers various pedagogical utilities (e.g. improving peer reviews and collaborative learning activities). Two approaches were used for training the models: in situ learning (in which an engagement indicator available at the time of the predictions is used as a proxy label to train a model within the same course) and transfer across courses (in which a model is trained using labels obtained from past course data). These techniques allowed producing predictions that are actionable by the instructor while the course still continues, which is not possible with post-hoc approaches requiring the use of true labels. According to the results, both transfer across courses and in situ learning approaches have produced predictions that were actionable yet as accurate as those obtained with cross validation, suggesting that they deserve further attention to create impact in MOOCs with real-world interventions. Potential pedagogical uses of the predictions were illustrated with several examples.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherTaylor & Francis Groupes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationEngagement predictiones
dc.subject.classificationPredicción del compromisoes
dc.subject.classificationMOOC (Massive Open Online Course)es
dc.subject.classificationCEMA (Curso En Línea Masivo y Abierto)es
dc.subject.classificationPeer reviewes
dc.subject.classificationRevisión por pareses
dc.subject.classificationIn situ learninges
dc.subject.classificationAprendizaje in situes
dc.titleGenerating actionable predictions regarding MOOC learners’ engagement in peer reviewses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2019 Informa UK Limitedes
dc.identifier.doi10.1080/0144929X.2019.1669222es
dc.relation.publisherversionhttps://www.tandfonline.com/doi/full/10.1080/0144929X.2019.1669222es
dc.peerreviewedSIes
dc.description.projectEuropean Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 793317)es
dc.description.projectMinisterio de Ciencia, Innovación y Universidades (projects TIN2017-85179-C3-2-R / TIN2014-53199-C3-2-R)es
dc.description.projectJunta de Castilla y León (grant VA257P18)es
dc.description.projectComisión Europea (grant 588438-EPP-1-2017-1-EL-EPPKA2-KA)es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/793317
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem