Mostrar el registro sencillo del ítem
dc.contributor.author | Er, Erkan | |
dc.contributor.author | Gómez Sánchez, Eduardo | |
dc.contributor.author | Bote Lorenzo, Miguel Luis | |
dc.contributor.author | Dimitriadis Damoulis, Ioannis | |
dc.contributor.author | Asensio Pérez, Juan Ignacio | |
dc.date.accessioned | 2019-10-21T10:20:44Z | |
dc.date.available | 2019-10-21T10:20:44Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Behaviour & Information Technology, in press, 2019 | es |
dc.identifier.issn | 1362-3001 | es |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/38655 | |
dc.description | Producción Científica | es |
dc.description.abstract | Peer review is one approach to facilitate formative feedback exchange in MOOCs; however, it is often undermined by low participation. To support effective implementation of peer reviews in MOOCs, this research work proposes several predictive models to accurately classify learners according to their expected engagement levels in an upcoming peer-review activity, which offers various pedagogical utilities (e.g. improving peer reviews and collaborative learning activities). Two approaches were used for training the models: in situ learning (in which an engagement indicator available at the time of the predictions is used as a proxy label to train a model within the same course) and transfer across courses (in which a model is trained using labels obtained from past course data). These techniques allowed producing predictions that are actionable by the instructor while the course still continues, which is not possible with post-hoc approaches requiring the use of true labels. According to the results, both transfer across courses and in situ learning approaches have produced predictions that were actionable yet as accurate as those obtained with cross validation, suggesting that they deserve further attention to create impact in MOOCs with real-world interventions. Potential pedagogical uses of the predictions were illustrated with several examples. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | Taylor & Francis Group | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject.classification | Engagement prediction | es |
dc.subject.classification | Predicción del compromiso | es |
dc.subject.classification | MOOC (Massive Open Online Course) | es |
dc.subject.classification | CEMA (Curso En Línea Masivo y Abierto) | es |
dc.subject.classification | Peer review | es |
dc.subject.classification | Revisión por pares | es |
dc.subject.classification | In situ learning | es |
dc.subject.classification | Aprendizaje in situ | es |
dc.title | Generating actionable predictions regarding MOOC learners’ engagement in peer reviews | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2019 Informa UK Limited | es |
dc.identifier.doi | 10.1080/0144929X.2019.1669222 | es |
dc.relation.publisherversion | https://www.tandfonline.com/doi/full/10.1080/0144929X.2019.1669222 | es |
dc.peerreviewed | SI | es |
dc.description.project | European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant 793317) | es |
dc.description.project | Ministerio de Ciencia, Innovación y Universidades (projects TIN2017-85179-C3-2-R / TIN2014-53199-C3-2-R) | es |
dc.description.project | Junta de Castilla y León (grant VA257P18) | es |
dc.description.project | Comisión Europea (grant 588438-EPP-1-2017-1-EL-EPPKA2-KA) | es |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/793317 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional