Mostrar el registro sencillo del ítem

dc.contributor.authorFrutos Baraja, Francisco Javier de 
dc.contributor.authorGarcía Archilla, Juan Bosco
dc.contributor.authorJohn, Volker
dc.contributor.authorNovo, Julia
dc.date.accessioned2019-11-06T19:21:53Z
dc.date.available2019-11-06T19:21:53Z
dc.date.issued2019
dc.identifier.citationIMA Journal of Numerical Analysis 39(4), 2019, 1747-1786es
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/39065
dc.description.abstractThis paper studies non inf-sup stable nite element approximations to the evolutionary Navier{Stokes equations. Several local projection stabilization (LPS) methods corresponding to di erent stabilization terms are analyzed, thereby separately studying the e ects of the di erent stabilization terms. Error estimates are derived in which the constants in the error bounds are independent of inverse powers of the viscosity. For one of the methods, using velocity and pressure nite elements of degree l, it will be proved that the velocity error in L1(0; T;L2( )) decays with rate l + 1=2 in the case that h, with being the dimensionless viscosity and h the mesh width. In the analysis of another method, it was observed that the convective term can be bounded in an optimal way with the LPS stabilization of the pressure gradient. Numerical studies con rm the analytical results.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleError Analysis of Non Inf-sup Stable Discretizations of the time-dependent Navier--Stokes Equations with Local Projection Stabilizationes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1093/imanum/dry044.es
dc.peerreviewedSIes
dc.description.projectMTM2016-78995-Pes
dc.description.projectVA024P17es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem