• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Álgebra, Análisis Matemático, Geometría y Topología
    • DEP96 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40136

    Título
    Improved Bounds on the Threshold Gap in Ramp Secret Sharing
    Autor
    Cascudo, Ignacio
    Gundersen, Jaron Skovsted
    Ruano Benito, DiegoAutoridad UVA Orcid
    Año del Documento
    2019
    Documento Fuente
    I. Cascudo, J.S. Gundersen, D. Ruano: Improved Bounds on the Threshold Gap in Ramp Secret Sharing. IEEE Transactions on Information Theory. Volume 65, Issue 7, pages 4620-4633 (2019)
    Abstract
    In this paper, we consider linear secret sharing schemes over a finite field F q , where the secret is a vector in Fℓ q and each of the n shares is a single element of F q . We obtain lower bounds on the so-called threshold gap g of such schemes, defined as the quantity r-t where r is the smallest number such that any subset of r shares uniquely determines the secret and t is the largest number such that any subset of t shares provides no information about the secret. Our main result establishes a family of bounds which are tighter than previously known bounds for ℓ ≳ 2 . Furthermore, we also provide bounds, in terms of n and q , on the partial reconstruction and privacy thresholds, a more fine-grained notion that considers the amount of information about the secret that can be contained in a set of shares of a given size. Finally, we compare our lower bounds with known upper bounds in the asymptotic setting.
    ISSN
    0018-9448
    Revisión por pares
    SI
    DOI
    10.1109/TIT.2019.2902151
    Patrocinador
    This work is supported by the Danish Council for Independent Research, grant DFF-4002- 00367, the Spanish Ministry of Economy/FEDER: grants MTM2015-65764-C3-2-P, MTM2015-69138- REDT, and RYC-2016-20208 (AEI/FSE/UE), and Junta de CyL (Spain): grant VA166G18
    Version del Editor
    https://ieeexplore.ieee.org/document/8654006
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/40136
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Collections
    • IMUVA - Artículos de Revista [89]
    • DEP96 - Artículos de revista [47]
    Show full item record
    Files in this item
    Nombre:
    IEEE2019eprint3.pdf
    Tamaño:
    566.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Comentarios

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10