• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/40699

    Título
    Time exponential splitting integrator for the Klein–Gordon equation with free parameters in the Hagstrom–Warburton absorbing boundary conditions
    Autor
    Alonso Mallo, IsaíasAutoridad UVA Orcid
    Portillo de la Fuente, Ana MaríaAutoridad UVA
    Año del Documento
    2018
    Documento Fuente
    Journal of Computational and Applied Mathematics Volume 333, 1 May 2018, Pages 185-199
    Abstract
    The Klein–Gordon equation on an infinite two dimensional strip is considered. Numerical computation is reduced to a finite domain by using the Hagstrom–Warburton (H–W) absorbing boundary conditions (ABCs) with free parameters in the formulation of the auxiliary variables. The spatial discretization is achieved by using fourth order finite differences and the time integration is made by means of an efficient and easy to implement fourth order exponential splitting scheme which was used in Alonso-Mallo and Portillo (2016) considering the fixed Padé parameters in the formulation of the ABCs. Here, we generalize the splitting time technique to other choices of the parameters. To check the timeintegrator we consider, on one hand, fourty peso ffixed parameters, the Newmann’s parameters, the Chebyshev’s parameters, the Padé’s parameters and optimal parameters proposed in Hagstrom et al. (2007) and, on the other hand, an adaptive scheme for the dynamic control of the order of absorption and the parameters. We study the efficiency of the splitting scheme by comparing with thefourth-order four-stage Runge–Kutta method.
    Revisión por pares
    SI
    DOI
    10.1016/j.cam.2017.10.038
    Patrocinador
    MTM2015-66837-P del Ministerio de Economía y Competitividad
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/40699
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    PortilloJCAM2018FreeParameters.pdf
    Tamaño:
    539.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10